skip to main content


Search for: All records

Creators/Authors contains: "Weber, Fridolin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The interiors of neutron stars reach densities and temperatures beyond the limits of terrestrial experiments, providing vital laboratories for probing nuclear physics. While the star's interior is not directly observable, its pressure and density determine the star's macroscopic structure which affects the spectra observed in telescopes. The relationship between the observations and the internal state is complex and partially intractable, presenting difficulties for inference. Previous work has focused on the regression from stellar spectra of parameters describing the internal state. We demonstrate a calculation of the full likelihood of the internal state parameters given observations, accomplished by replacing intractable elements with machine learning models trained on samples of simulated stars. Our machine-learning-derived likelihood allows us to performmaximum a posterioriestimation of the parameters of interest, as well as full scans. We demonstrate the technique by inferring stellar mass and radius from an individual stellar spectrum, as well as equation of state parameters from a set of spectra. Our results are more precise than pure regression models, reducing the width of the parameter residuals by 11.8% in the most realistic scenario. The neural networks will be released as a tool for fast simulation of neutron star properties and observed spectra. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Free, publicly-accessible full text available July 1, 2024
  3. Strange stars ought to exist in the universe according to the strange quark matter hypothesis, which states that matter made of roughly equal numbers of up, down, and strange quarks could be the true ground state of baryonic matter rather than ordinary atomic nuclei. Theoretical models of strange quark matter, such as the standard MIT bag model, the density-dependent quark mass model, or the quasi-particle model, however, appear to be unable to reproduce some of the properties (masses, radii, and tidal deformabilities) of recently observed compact stars. This is different if alternative gravity theory (e.g., non-Newtonian gravity) or dark matter (e.g., mirror dark matter) are considered, which resolve these issues. The possible existence of strange stars could thus provide a clue to new physics, as discussed in this review. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  4. R. Ruffini and G. Vereshchagin (Ed.)
    The equilibrium configuration of white dwarfs composed of anisotropic fluid distribution in the presence of a strong magnetic field is investigated in this work. By considering a functional form of the anisotropic stress and magnetic field profile, some physical properties of magnetized white dwarfs, such as mass, radius, density, radial and tangential pressures, are derived; their dependency on the anisotropy and central magnetic field is also explored. We show that the orientations of the magnetic field along the radial direction or orthogonal to the radial direction influence the stellar structure and physical properties of white dwarfs significantly. Importantly, we show that ignoring anisotropy governed by the fluid due to its high density in the presence of a strong magnetic field would destabilize the star. Through this work, we can explain the highly massive progenitor for peculiar over-luminous type Ia supernovae, and low massive progenitor for under-luminous type Ia supernovae, which poses a question of considering 1.4 solar mass white dwarf to be related to the standard candle. 
    more » « less
  5. Abstract

    Neutron stars may experience differential rotation on short, dynamical timescales following extreme astrophysical events like binary neutron star mergers. In this work, the masses and radii of differentially rotating neutron star models are computed. We employ a set of equations of states for dense hypernuclear and ‐admixed‐hypernuclear matter obtained within the framework of CDF theory in the relativistic Hartree‐Fock (RHF) approximation. Results are shown for varying meson‐ couplings, or equivalently the ‐potential in nuclear matter. A comparison of our results with those obtained for nonrotating stars shows that the maximum mass difference between differentially rotating and static stars is independent of the underlying particle composition of the star. We further find that the decrease in the radii and increase in the maximum masses of stellar models when ‐isobars are added to hyperonuclear matter (as initially observed for static and uniformly rotating stars) persist also in the case of differentially rotating neutron stars.

     
    more » « less
  6. Abstract Neutron stars provide a unique laboratory for studying matter at extreme pressures and densities. While there is no direct way to explore their interior structure, X-rays emitted from these stars can indirectly provide clues to the equation of state (EOS) of the superdense nuclear matter through the inference of the star's mass and radius. However, inference of EOS directly from a star's X-ray spectra is extremely challenging and is complicated by systematic uncertainties. The current state of the art is to use simulation-based likelihoods in a piece-wise method which relies on certain theoretical assumptions and simplifications about the uncertainties. It first infers the star's mass and radius to reduce the dimensionality of the problem, and from those quantities infer the EOS. We demonstrate a series of enhancements to the state of the art, in terms of realistic uncertainty quantification and a path towards circumventing the need for theoretical assumptions to infer physical properties with machine learning. We also demonstrate novel inference of the EOS directly from the high-dimensional spectra of observed stars, avoiding the intermediate mass-radius step. Our network is conditioned on the sources of uncertainty of each star, allowing for natural and complete propagation of uncertainties to the EOS. 
    more » « less
  7. It is generally accepted that the limit on the stable rotation of neutron stars is set by gravitational-radiation reaction (GRR) driven instabilities, which cause the stars to emit gravitational waves that carry angular momentum away from them. The instability modes are moderated by the shear viscosity and the bulk viscosity of neutron star matter. Among the GRR instabilities, the f-mode instability plays a historically predominant role. In this work, we determine the instability periods of this mode for three different relativistic models for the nuclear equation of state (EoS) named DD2, ACB4, and GM1L. The ACB4 model for the EoS accounts for a strong first-order phase transition that predicts a new branch of compact objects known as mass-twin stars. DD2 and GM1L are relativistic mean field (RMF) models that describe the meson-baryon coupling constants to be dependent on the local baryon number density. Our results show that the f-mode instability associated with m=2 sets the limit of stable rotation for cold neutron stars (T≲1010 K) with masses between 1M⊙ and 2M⊙. This mode is excited at rotation periods between 1 and 1.4 ms (∼20% to ∼40% higher than the Kepler periods of these stars). For cold hypothetical mass-twin compact stars with masses between 1.96M⊙ and 2.10M⊙, the m=2 instability sets in at rotational stellar periods between 0.8 and 1 millisecond (i.e., ∼25% to ∼30% above the Kepler period). 
    more » « less
  8. Abstract We investigate the properties of anisotropic, spherically symmetric compact stars, especially neutron stars (NSs) and strange quark stars (SQSs), made of strongly magnetized matter. The NSs are described by the SLy equation of state (EOS) and the SQSs by an EOS based on the MIT Bag model. The stellar models are based on an a priori assumed density dependence of the magnetic field and thus anisotropy. Our study shows that not only the presence of a strong magnetic field and anisotropy, but also the orientation of the magnetic field itself, have an important influence on the physical properties of stars. Two possible magnetic field orientations are considered: a radial orientation where the local magnetic fields point in the radial direction, and a transverse orientation, where the local magnetic fields are perpendicular to the radial direction. Interestingly, we find that for a transverse orientation of the magnetic field, the stars become more massive with increasing anisotropy and magnetic-field strength and increase in size since the repulsive, effective anisotropic force increases in this case. In the case of a radially oriented magnetic field, however, the masses and radii of the stars decrease with increasing magnetic-field strength because of the decreasing effective anisotropic force. Importantly, we also show that in order to achieve hydrostatic equilibrium configurations of magnetized matter, it is essential to account for both the local anisotropy effects as well as the anisotropy effects caused by a strong magnetic field. Otherwise, hydrostatic equilibrium is not achieved for magnetized stellar models. 
    more » « less