skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Weber, Fridolin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. IntroductionThis paper investigates the impact of differential rotation on the bulk properties and onset of rotational instabilities in neutron stars at finite temperatures up to 50 MeV. MethodsUtilizing the relativistic Brueckner-Hartree-Fock (RBHF) formalism in full Dirac space, the study constructs equation of state (EOS) models for hot neutron star matter, including conditions relevant for high temperatures. These finite-temperature EOS models are applied to compute the bulk properties of differentially rotating neutron stars with varying structural deformations. ResultsThe findings demonstrate that the stability of these stars against bar-mode deformation, a key rotational instability, is only weakly dependent on temperature. Differential rotation significantly affects the maximum mass and radius of neutron stars, and the threshold for the onset of bar-mode instability shows minimal sensitivity to temperature changes within the examined range. DiscussionThese findings are crucial for interpreting observational data from neutron star mergers and other high-energy astrophysical events. The research underscores the necessity of incorporating differential rotation and finite temperature effects in neutron star models to predict their properties and stability accurately. 
    more » « less
  2. Abstract This study investigates the properties of symmetric and asymmetric nuclear matter using the relativistic Brueckner–Hartree–Fock formalism, examining both zero and finite temperatures up to 70 MeV. Employing the full Dirac space, we incorporate three Bonn potentials (A, B, and C), which account for meson masses, coupling strengths, cutoff parameters, and form factors. The calculated properties of asymmetric nuclear matter form the basis for constructing equation-of-state (EOS) models tailored for neutron stars. These models, in turn, enable the computation of bulk properties for nonrotating, uniformly rotating, and differentially rotating neutron stars. Notably, the EOS models studied in this paper are sufficiently versatile to accommodate the mass of the most massive neutron star ever detected, PSR J0952–0607, estimated to be 2.35 ± 0.17M. Furthermore, they yield masses and radii for PSR J0030+451 that align with the confidence intervals established for this pulsar. 
    more » « less
  3. Abstract Neutron stars provide a unique opportunity to study strongly interacting matter under extreme density conditions. The intricacies of matter inside neutron stars and their equation of state are not directly visible, but determine bulk properties, such as mass and radius, which affect the star's thermal X-ray emissions. However, the telescope spectra of these emissions are also affected by the stellar distance, hydrogen column, and effective surface temperature, which are not always well-constrained. Uncertainties on these nuisance parameters must be accounted for when making a robust estimation of the equation of state. In this study, we develop a novel methodology that, for the first time, can infer the full posterior distribution of both the equation of state and nuisance parameters directly from telescope observations. This method relies on the use of neural likelihood estimation, in which normalizing flows use samples of simulated telescope data to learn the likelihood of the neutron star spectra as a function of these parameters, coupled with Hamiltonian Monte Carlo methods to efficiently sample from the corresponding posterior distribution. Our approach surpasses the accuracy of previous methods, improves the interpretability of the results by providing access to the full posterior distribution, and naturally scales to a growing number of neutron star observations expected in the coming years. 
    more » « less
  4. Abstract Based on an analytically continued Riemannian foliated quantum gravity super-Hamiltonian, known as branch cut quantum gravity (BCQG) we propose a novel approach to investigating the effects of noncommutative geometry on a minisuperspace of variables, influencing the acceleration behavior of the Universe’s wave function and the cosmic scale factor. Noncommutativity is introduced through a deformation of the conventional Poisson algebra, enhanced with a symplectic metric. The resulting symplectic manifold provides a natural setting that enables an isomorphism between canonically conjugate dual vector spaces, spanning the BCQG cosmic scale factor and its complementary quantum counterpart. Using this formulation, we describe the dynamic evolution of the Universe’s wave function, the cosmic scale factor, and its complementary quantum image. Our results strongly suggest that the noncommutative algebra induces late-time accelerated growth of the wave function, the Universe’s scale factor, and its complementary quantum counterpart, offering a new perspective on explaining the accelerating cosmic expansion rate and the inflationary period. In contrast to the inflationary model, where inflation requires a remarkably fine-tuned set of initial conditions in a patch of the Universe, analytically continued non-commutative foliated quantum gravity captures short and long scales, driving the evolutionary dynamics of the Universe through a reconfiguration of the primordial cosmic content of matter and energy. This reconfiguration is encapsulated into a quantum field potential, which leads to the generation of relic gravitational waves, a topic for future investigation. Graphical representations and contour plots indicate a characteristic torsion (or twist) deformation of spacetime geometry. This result introduces new speculative elements regarding the reconfiguration of matter and energy as a driver of spacetime torsion deformation, generating relic gravitational waves and serving as an alternative topological mechanism for the Universe’s acceleration. However, these assumptions require further investigation. 
    more » « less
  5. Due to the high-density nuclear matter equation of state (EOS) being as yet unknown, neutron stars (NSs) do not have a confirmed limiting “Chandrasekhar” type maximum mass. However, observations of NSs (PSR J1614-2230, PSR J0348+0432, PSR J0740+6620, PSR J0952–0607) indicate that the NS’s limiting mass, if there is any, could be well over 2M⊙. On the other hand, there seems to be an observational mass gap (of around 2.5−5M⊙ ) between the lightest black hole and the heaviest NS. Therefore, the “massive NSs” are prime candidates to fill that gap. Several NS EOSs have been proposed using both microscopic and phenomenological approaches. In this project, we look at a class of phenomenological nuclear matter EOSs—relativistic mean field models—and see what kind of NS is formed from them. We compute the max- imum mass supported by each model EOS to observe if the mass of the NS is indeed in the “massive” NS (>2M⊙) regime. We also observe the effects of including exotic particles (hyperons, Δs) in the NS EOS and how that affects the NS mass. However, only by introducing the magnetic field, i.e. for magnetized anisotro- pic NSs, we find the mass exceeding 2.5M⊙. Using tidal deformability constraints from gravitational wave observations, we place a further check on how physical the EOS and NSs are. 
    more » « less
  6. Abstract This article focuses on the implications of a noncommutative formulation of branch‐cut quantum gravity. Based on a mini‐superspace structure that obeys the noncommutative Poisson algebra, combined with the Wheeler–DeWitt equation and Hořava–Lifshitz quantum gravity, we explore the impact of a scalar field of the inflaton‐type in the evolution of the Universe's wave function. Taking as a starting point the Hořava–Lifshitz action, which depends on the scalar curvature of the branched Universe and its derivatives, the corresponding wave equations are derived and solved. The noncommutative quantum gravity approach adopted preserves the diffeomorphism property of General Relativity, maintaining compatibility with the Arnowitt–Deser–Misner Formalism. In this work we delve deeper into a mini‐superspace of noncommutative variables, incorporating scalar inflaton fields and exploring inflationary models, particularly chaotic and nonchaotic scenarios. We obtained solutions to the wave equations without resorting to numerical approximations. The results indicate that the noncommutative algebraic space captures low and high spacetime scales, driving the exponential acceleration of the Universe. 
    more » « less
  7. Abstract This article focuses on a recently developed formulation based on the noncommutative branch‐cut cosmology, the Wheeler‐DeWitt (WdW) equation, the Hořava–Lifshitz quantum gravity, chaotic and the coupling of the corresponding Lagrangian approach with the inflaton scalar field. Assuming a mini‐superspace of variables obeying the noncommutative Poisson algebra, we examine the impact of the inflaton scalar field on the evolutionary dynamics of the branch‐cut Universe scale factor, characterized by the dimensionless helix‐like function . This scale factor characterizes a Riemannian foliated spacetime that topologically overcomes the primordial singularities. We take the Hořava–Lifshitz action modeled by branch‐cut quantum gravity as our starting point, which depends on the scalar curvature of the branched Universe and its derivatives and which preserves the diffeomorphism property of General Relativity, maintaining compatibility with the Arnowitt–Deser–Misner formalism. We then investigate the sensitivity of the scale factor of the branch‐cut Universe's dynamics. 
    more » « less
  8. The interiors of neutron stars reach densities and temperatures beyond the limits of terrestrial experiments, providing vital laboratories for probing nuclear physics. While the star's interior is not directly observable, its pressure and density determine the star's macroscopic structure which affects the spectra observed in telescopes. The relationship between the observations and the internal state is complex and partially intractable, presenting difficulties for inference. Previous work has focused on the regression from stellar spectra of parameters describing the internal state. We demonstrate a calculation of the full likelihood of the internal state parameters given observations, accomplished by replacing intractable elements with machine learning models trained on samples of simulated stars. Our machine-learning-derived likelihood allows us to performmaximum a posterioriestimation of the parameters of interest, as well as full scans. We demonstrate the technique by inferring stellar mass and radius from an individual stellar spectrum, as well as equation of state parameters from a set of spectra. Our results are more precise than pure regression models, reducing the width of the parameter residuals by 11.8% in the most realistic scenario. The neural networks will be released as a tool for fast simulation of neutron star properties and observed spectra. 
    more » « less